

LOG GEOLOGICI CON FLUORESCENZA A RAGGI X PORTATILE TRAMITE ANALIZZATORI VANTA

Gli analizzatori portatili Olympus a fluorescenza a raggi X (pXRF) forniscono dati geochimici in tempo reale ad alte prestazioni per una rapida caratterizzazione multielemento di suoli, rocce e minerali. I recenti importanti progressi nella tecnologia pXRF hanno ridotto significativamente i tempi dei test di analisi e migliorato notevolmente i limiti di rilevamento e il numero di elementi misurati. Gli analizzatori Vanta ™ vengono ora utilizzati nelle analisi di routine nell'identificazione di tipi di roccia mediante litogeochimica. Vengono inoltre integrati nelle attività di rilevamento geologico standard (suolo, frammenti di perforazione e carote) poiché possono fornire istantaneamente dati chimici oggettivi in-situ. Questi dati possono essere utilizzati per classificare e interpretare i tipi di roccia, l'alterazione e la mineralizzazione allo stesso tempo o anche prima della registrazione visiva di routine.

Rilevamento geologico basato sui dati pXRF

Con il rilevamento geologico, un geologo effettua osservazioni visive per registrare il tipo di roccia, l'alterazione, la consistenza, la struttura e altre caratteristiche di una varietà di campioni tra cui suoli, frammenti, rocce e carote. Il geologo utilizza in genere un grafico con una colonna geologica (log) per registrare le caratteristiche visive o le caratteristiche paramagnetiche tra cui colore, granulometria, consistenza, orientamenti strutturali, lettiera, alterazione, metamorfismo e taglio trasversale.

Il rilevamento geologico è un'abilità fondamentale acquisita in anni di studio teorico delle collezioni di rocce e depositi seguiti da anni di lavoro sul campo osservando la geologia in situ o utilizzando campioni di perforazione. Solo allora un geologo è pronto a intraprendere dettagliate campagne di registrazione sul campo studiando la complessità e la variazione della geologia in tutto il mondo. Di conseguenza, un'espressione spesso utilizzata nel settore dell'esplorazione mineraria è: "Il geologo che ha visto più rocce, vince!"

L'XRF portatile e altre tecniche analitiche stanno trasformando il modo in cui conduciamo il rilevalmento moderno e di routine. La consegna in tempo reale di informazioni di rilevamento oggettivo a sistemi informativi geografici (GIS), sistemi di gestione delle informazioni geologiche (GIMS) e pacchetti di visualizzazione e modellazione 3D sta rivoluzionando il settore.

La registrazione visiva è soggettiva

Uno dei problemi principali con il rilevamento geologico visivo è che ogni geologo ha la propria esperienza, opinione e idea di quali rocce sta osservando. Questa situazione crea complessità quando si combinano i dati di più geologi su un dato progetto. La natura soggettiva delle osservazioni visive è illustrata nella figura 1, dove a otto geologi è stata assegnata la stessa sequenza da rilevare. Ciò ha portato a sette diverse risposte (i geologici sei e sette hanno copiato il lavoro l'uno dell'altro).

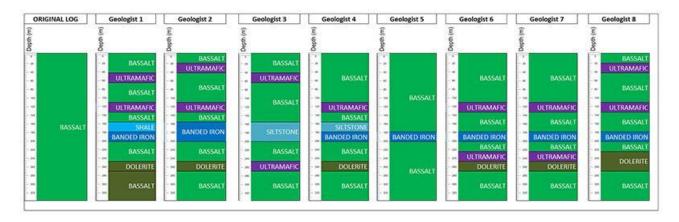


Figura 1. Osservazioni di 8 diversi geologi con differenti esperienze sulla stessa sequenza rocciosa

I dati delle analisi di laboratorio arrivano ben dopo che si è verificato il rilevamento geologico originale, creando una fondamentale disconnessione tra le osservazioni di rilevamento e il riferimento incrociato e la convalida con la geochimica. Può anche portare a decisioni di fine foro inadeguate o ritardate (se continuare o interrompere la perforazione) sul campo e far sì che l'equipaggio di perforazione venga messo in standby o spostato in una posizione diversa. È qui che la tecnologia pXRF aggiunge un valore significativo fornendo dati geochimici quasi in tempo reale.

La combinazione con XRD

La registrazione geologica con un analizzatore Vanta pXRF presenta molti vantaggi e l'aggiunta dell'analizzatore di diffrazione di raggi X portatile TERRA® (pXRD) offre ancora di più:

- Dati oggettivi che possono essere correlati senza soluzione di continuità tra le posizioni o i fori
- Aiuta nella digitazione e identificazione delle rocce
- Consente al geologo di collegare le osservazioni litologiche alla geochimica
- Prendere decisioni preziose e sensibili al tempo (chiamare end-of-hole o estendere)
- La litogeochimica e la geochimica multivariata intelligente possono essere applicate per identificare unità rocciose, alterazioni, controlli strutturali e confini litologici
- Integrare i dati negli algoritmi o persino nelle routine di machine learning per automatizzare il flusso di lavoro
- I dati pXRD possono integrare il dato pXRF fornendo mineralogia quantitativa
- I dati possono essere immediatamente consegnati, elaborati, tracciati, tracciati o visualizzati
- Osservare i dati online, ovunque nel mondo

Come con qualsiasi tecnologia di analisi, la pXRF richiede un'applicazione adatta allo scopo della tecnologia con preparazione e presentazione del campione appropriate, QA / QC e catena di custodia allo stesso modo dei dati di laboratorio convenzionali.

La Figura 2 (sotto) illustra il tipo di dati che possono essere generati utilizzando un esempio di carote di perforazione dalla miniera di pirite di Brukunga nell'Australia meridionale e il lavoro di ricerca condotto dalla Deep Exploration Technologies Commonwealth Research Cooperative (DET CRC) in Australia.

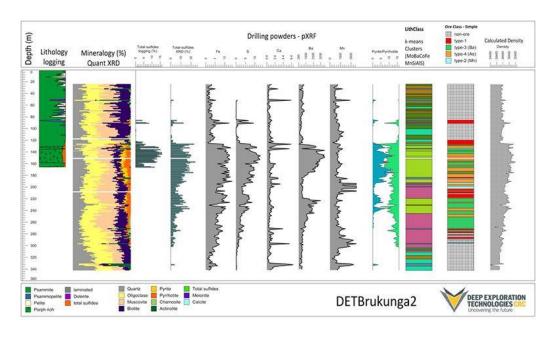


Figura 2. Registro digitale dei fori di trivellazione di Bruknunga2 che mostra la geochimica pXRF e la mineralogia pXRD derivate dai frammenti di trivellazione

La Figura 3 illustra il potenziale dell'utilizzo di algoritmi avanzati (tassellazione della trasformata wavelet su ferro) per dominare le caratteristiche litologiche a tre diversi ordini di grandezza.

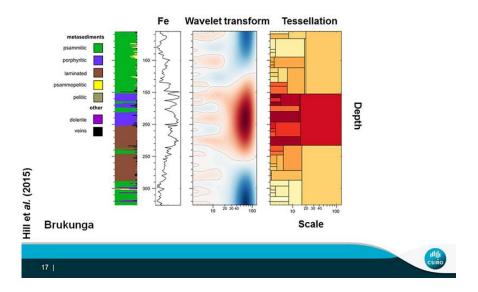


Figura 3. Tassellazione della trasformata Wavelet applicata a un pozzo di dati pXRF in ferro a Brukunga, South Australia.

Via Guido Rossa 14 23875 Osnago (LC) - Italy Tel. +39 039 9280061 Fax. +39 039 9289636 info@quantanalitica.com www.quantanalica.com